pandas中groupby("x").count和groupby("x").size的区别

1、官方文档
ndarray.size
Number of elements in the array.矩阵中元素的个数。

s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3

df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.size
4

2、size包括NaN值,count不包括:

In [46]:
df = pd.DataFrame({'a':[0,0,1,2,2,2], 'b':[1,2,3,4,np.NaN,4], 'c':np.random.randn(6)})
df

Out[46]:
   a   b         c
0  0   1  1.067627
1  0   2  0.554691
2  1   3  0.458084
3  2   4  0.426635
4  2 NaN -2.238091
5  2   4  1.256943

In [48]:
print(df.groupby(['a'])['b'].count())
print(df.groupby(['a'])['b'].size())

a
0    2
1    1
2    2
Name: b, dtype: int64

a
0    2
1    1
2    3
dtype: int64 

3、即使数据没有NA值,count()的结果也更加冗长

In [114]:
grouped = fec_mrbo.groupby(['cand_nm',labels])
grouped.size().unstack(0)
Out[114]:
cand_nm Obama, Barack   Romney, Mitt
contb_receipt_amt       
(0, 1]  493.0   77.0
(1, 10] 40070.0 3681.0
(10, 100]   372280.0    31853.0
(100, 1000] 153991.0    43357.0
(1000, 10000]   22284.0 26186.0
(10000, 100000] 2.0 1.0
(100000, 1000000]   3.0 NaN
(1000000, 10000000] 4.0 NaN

In [115]:
grouped = fec_mrbo.groupby(['cand_nm',labels])
grouped.count().unstack(0)
Out[115]:

cmte_id cand_id contbr_nm   contbr_city contbr_st   ... memo_cd memo_text   form_tp file_num    parties
cand_nm Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    ... Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt    Obama, Barack   Romney, Mitt
contb_receipt_amt                                                                                   
(0, 1]  493.0   77.0    493.0   77.0    493.0   77.0    493.0   77.0    493.0   77.0    ... 31.0    1.0 138.0   10.0    493.0   77.0    493.0   77.0    493.0   77.0
(1, 10] 40070.0 3681.0  40070.0 3681.0  40070.0 3681.0  40070.0 3681.0  40070.0 3681.0  ... 4645.0  14.0    4781.0  53.0    40070.0 3681.0  40070.0 3681.0  40070.0 3681.0
(10, 100]   372280.0    31853.0 372280.0    31853.0 372280.0    31853.0 372276.0    31853.0 372280.0    31853.0 ... 33331.0 74.0    33789.0 236.0   372280.0    31853.0 372280.0    31853.0 372280.0    31853.0
(100, 1000] 153991.0    43357.0 153991.0    43357.0 153991.0    43357.0 153991.0    43355.0 153987.0    43357.0 ... 31674.0 347.0   31897.0 849.0   153991.0    43357.0 153991.0    43357.0 153991.0    43357.0
(1000, 10000]   22284.0 26186.0 22284.0 26186.0 22284.0 26186.0 22284.0 26185.0 22284.0 26186.0 ... 16622.0 640.0   16693.0 2217.0  22284.0 26186.0 22284.0 26186.0 22284.0 26186.0
(10000, 100000] 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0 ... 0.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 1.0
(100000, 1000000]   3.0 NaN 3.0 NaN 3.0 NaN 3.0 NaN 3.0 NaN ... 3.0 NaN 3.0 NaN 3.0 NaN 3.0 NaN 3.0 NaN
(1000000, 10000000] 4.0 NaN 4.0 NaN 4.0 NaN 4.0 NaN 4.0 NaN ... 4.0 NaN 4.0 NaN 4.0 NaN 4.0 NaN 4.0 NaN
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。