GNN + Zero-shot

1 Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs

——CMU CVPR2018

1.1 任务描述

total label: n (okapi/ zebra/ deer)

seen label: m (zebra/ deer) + training pictures

unseen label: n-m (okapi) 

knowledge graph:seen + unseen 

1.2 模型框架

Input:Word Embedding x_i (a semantic description of each specific class)

Output:visual classifier (logistic regression model) \hat{w}_i  (GT w_i(i=1,...,m) by training data)

visual feature (by pre-trained ConvNet) * classifier = classification score


1.3 实验结果

效果翻两倍(๑•̀ㅂ•́)و✧

Code https://github.com/JudyYe/zero-shot-gcn


2 Rethinking Knowledge Graph Propagation for Zero-Shot Learning

2019.3.27 论文1的进阶版

2.1 主要思路

论文1中的6层GCN会造成over-smoothing的问题,所以本文提出了Dense Graph Propagation (DGP) 模块,直接连接远距离的结点,只需1层GCN。

2.2 模型框架

Dense Graph Propagation 

2 connect patterns: descendant propagation & ancestor propagation

Training: 

1. train the DGP to predict the last layer weights of a pre-trained CNN

2. train the CNN by optimizing the cross-entropy classification loss on the seen classes

Test: 

CNN Feature Extraction * \wave{W} 

2.3 实验结果

比文章1的结果更好(๑•̀ㅂ•́)و✧


3 The More You Know: Using Knowledge Graphs for Image Classification

——CMU CVPR2017

As most knowledge graphs are large for reasoning, [60] selects some related entities to build a sub-graph based on the result of object detection and applies GGNN to the extracted graph for prediction.

Graph model: GGNN -> GSNN



4 Multi-Label Zero-Shot Learning with Structured Knowledge Graphs

——CMU CVPR2018

4.1 新的知识图谱

结点特征是word embedding

Source: WordNet (easily accessible and contains rich semantic relationships between different concepts)

边种类:

1 super-subordinate: directly extracted from WordNet

2 positive correlation & negative correlation: label similarities are calculated by WUP similarity [45], followed by thresholding the soft similarities into positive and negative correlations.

4.2 模型结构

结点特征是x的feature,word embedding在边上起作用

1. 正常的multi-label分类作为初始化 x features -> Fi = node initial belief states hv^0 

y \in {0,1}^{|S|}

2. label之间开始传递 Graph model:GGNN->GSNN

边W word embedding: F_R^k (w_u,w_v)->a_vu propagation weight (k=3)

3. 输出 hv^(T) -> Fo ->\hat{y}\in {0,1}


propagation matrix A

F_R^k: neural network


information propagation

4.3 实验结果

5 总结

论文中的知识图谱的结构都是事先规定好的。

5.1 知识图谱数据库

语言知识图谱:WordNet

事实性知识图谱:OpenCyc , Freebase , DBpedia , YAGO2

领域知识图谱:人物之间的亲属关系Kinships,医学领域UMLS,Cora

机器自动构建的知识图谱:Knowledge Vault,NELL


统一医学语言系统(Unified Medical Language System,UMLS)是美国国立医学图书馆持续开发了20多年的巨型医学术语系统,涵盖了临床、基础、药学生物学、医学管理等医学及与医学相关学科,收录了约200万个医学概念,医学词汇更是空前,达到了500多万个。


医疗图像具有特定性,比如WSI,就是癌细胞和非癌细胞两种,不像自然图片会有那么多种类。

准确性还比较低,医疗不太能允许有那么低的准确率


土拨鼠自己做笔记用的,不接受其他小鼠的批评~~


土拨鼠自己做笔记用的,不接受其他小鼠的批评~~

土拨鼠自己做笔记用的,不接受其他小鼠的批评~~

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。