论文笔记:Predicting Target Language CCG Supertags Improves Neural Machine Translation

一、文章有什么贡献?

  1. 主要共享是提出了一个新的思路,以CCG (Combinatory Categorial Grammar) Supertag的形式将句法信息引入了,NMT(神经机器翻译)的解码器端,对NMT的性能有了一定提高。
  2. 用两种方式将CCG Supertag任务引入解码器,一种是直接插入输出的序列,一种是利用了多任务学习,对多任务学习的研究也有一些贡献。
  3. 展示了不光是解码器,当同时在编码器端输入语言学信息的时候,性能得到进一步提高。
  4. 对其中更多细节,如句子种类还有句子长度也进行了详细的分析。进一步理解,引入语言学信息后对NMT系统的影响。

二、本文研究问题有什么价值?

首先引入CCG Supertag来对NMT的解码器加入语法学信息,而且证明了这种情况下直接插入输出序列比多任务学习的性能要好。当然主要还是证明了,语言学对NMT系统的影响。

三、研究问题有什么挑战?

大概就是如何将CCG supertag的语法信息引入编码器端吧。

之后很多都是对系统的详细分析了。

四、本文解决思路?

本文提出了两个解决思路。

  1. 一个是interleaving,也就是将CCG supertag直接相间插入目标语言的序列中去,也就是将输出序列长度增加一倍,一个单词一个相应的tag。如这样 $y{'}=y_1{tag},y_1{word},...,y_T{tag},y_T^{word}$ .

    然后就把这个当做是原来的目标语言序列,进行解码预测。

    interleaving
  2. 还有一种思路是利用多任务学习(Multi-task Learning),两个解码器分别用来翻译和输出CCG supertag,这两个解码器共享一个编码器。

    multitasking

    结果是第一个方案更好一些。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 135,764评论 19 139
  • 在保证视频图像质量的前提下,HEVC通过增加一定的计算复杂度,可以实现码流在H.264/AVC的基础上降低50%。...
    加刘景长阅读 12,461评论 0 6
  • 本系列第三篇,承接前面的《浅谈机器学习基础》和《浅谈深度学习基础》。 自然语言处理绪论 什么是自然语言处理? 自然...
    我偏笑_NSNirvana阅读 18,258评论 2 68
  • 近日,谷歌官方在 Github开放了一份神经机器翻译教程,该教程从基本概念实现开始,首先搭建了一个简单的NMT模型...
    MiracleJQ阅读 11,562评论 1 11
  • 0, 就……就这么结束了吗? 我抓着树根,看了看脚下,似乎可以坠落很久的样子。 又看了看头上,似乎也要坠落很久的样...
    LostAbaddon阅读 4,138评论 7 4