电势与场

在一个没有任何电荷的无限大空间中,电势的分布遵循Laplace's equation:
![](http://latex.codecogs.com/png.latex?\frac{\partial^2V}{\partial x^2}+\frac{\partial ^2V}{\partial y^2}+\frac{\partial ^2V}{\partial z^2}=0)
接下来的讨论中,我们将针对拉普拉斯方程展开讨论,并将其用python代码模拟出来。

公式推导

在点(i,j,k)上我们对x的偏分可以写作:
![](http://latex.codecogs.com/png.latex?\frac{\partial V}{\partial x}\approx \frac{V(i+1,j,k)-v(i,j,k)}{\Delta x})
或者:
![](http://latex.codecogs.com/png.latex?\frac{\partial V}{\partial x} \approx \frac{V(i,j,k)-V(i-1,j,k)}{\Delta x})
因此,容易得到:
![](http://latex.codecogs.com/png.latex?\frac{\partial ^2V}{\partial x^2}\approx \frac{1}{\Delta x}[\frac{V(i+1,j,k)-V(i,j,k)}{\Delta x}-\frac{V(i,j,k)-V(i-1,j,k)}{\Delta x}])
再稍微做一点运算,得到:
![](http://latex.codecogs.com/png.latex?\frac{\partial ^2V}{\partial x^2}\approx \frac{V(i+1,j,k)+V(i-1,j,k)-2V(i,j,k)}{(\Delta x)^2})

对y,z方向上的偏分运算也是类似的,在此就不做推导,再将上面的式子代入Laplace's equation中,得到:

![](http://latex.codecogs.com/png.latex? V(i,j,k)=\frac{1}{6}[V(i+1,j,k)+V(i-1,j,k)+V(i,j+1,k)+V(i,j-1,k)+V(i,j,k+1)+V(i.j,k-1)])

我们先考虑平面的情况,因此上式改为:

![](http://latex.codecogs.com/png.latex? V(i,j)=\frac{1}{4}[V(i+1,j,k)+V(i-1,j,k)+V(i,j+1,k)+V(i,j-1,k)])

具体算法

我们首先预设一些初始值,并用上式不断的迭代这些值,直到这些值满足Laplace's equation

  • set initial value of laplace's V to be zero.
  • loop through all points(i,j) except the boundary,where values of V_n are fixed by the boundary conditions.
  • ![](http://latex.codecogs.com/png.latex?Return\ V_{n+1}(i,j)\ and\ \triangle V\ to\the\ calling\ program)
code
# -*- coding: utf-8 -*-
#  author:Ricardo Zi Tseng #
# electric potentials and fields:Laplace's Equation #

import math
import numpy as np
import matplotlib.pyplot as pl
class Laplace(object):
    def __init__(self):
        self.V = np.array([[-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00]])

        self.temp_V = np.array([[-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00],
                                [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                                [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                                [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                                [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                                [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                                [-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00]])
    def Run(self):
        loop = True
        # sum_value = 0
        k = 0
        while(loop):
            temp = self.V
            for i in range(1,6):
                for j in range(1,6):
                    self.temp_V[i,j] = (self.V[i-1,j] + self.V[i+1,j] + self.V[i,j-1] + self.V[i,j+1])/4
                    # sum_value = sum_value + abs(self.temp_V[i,j]-self.V[i,j])
            self.V = self.temp_V
            # sum_value = sum_value/49
            k = k + 1   
            if k > 1:
            # if sum_value < 0.0001:
                loop = False
    def Show(self):
        print(self.V)
tips:

由于python中的list需要考虑到浅copy和深copy的问题,为了减少不必要的麻烦与错误,我直接将程序中的所有list转化为numpy中的矩阵了,效果理想。

运算结果

我们首先设定初始值:

                           [-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00],
                         [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.00,-0.00,0.00,0.00,0.00,1.00],
                           [-1.00,-0.67,-0.33,0.00,0.33,0.67,1.00]

  • 第一次迭代
[[-1.         -0.67       -0.33        0.          0.33        0.67        1.        ]
 [-1.         -0.500625   -0.20765625 -0.03128906  0.17905273  0.52476318   1.        ]
 [-1.         -0.43765625 -0.16132812 -0.0481543   0.09522461  0.46749695   1.        ]
 [-1.         -0.42191406 -0.14581055 -0.04849121  0.07418335  0.44792007   1.        ]
 [-1.         -0.45985352 -0.17204102 -0.05513306  0.08788757  0.48832691   1.        ]
 [-1.         -0.55308838 -0.26378235 -0.05910385  0.19407093  0.58809946   1.        ]
 [-1.         -0.67       -0.33        0.          0.33        0.67         1.        ]]
  • 第十次迭代
[[-1.         -0.67       -0.33        0.          0.33        0.67        1.        ]
 [-1.         -0.6715042  -0.33950297 -0.00741688  0.32681153  0.66439877  1.        ]
 [-1.         -0.67337165 -0.34377344 -0.01122901  0.32445917  0.66239877  1.        ]
 [-1.         -0.67355945 -0.34410226 -0.0113158   0.32455897  0.66232886  1.        ]
 [-1.         -0.6720973  -0.34143181 -0.00852736  0.32665836  0.66353442  1.        ]
 [-1.         -0.67005562 -0.33680115 -0.0042711   0.32938443  0.66572971  1.        ]
 [-1.         -0.67       -0.33        0.          0.33        0.67        1.        ]]
  • 第十五次迭代
[[-1.         -0.67       -0.33        0.          0.33        0.67        1.        ]
 [-1.         -0.66853725 -0.3344115  -0.0017874   0.33129     0.66668929  1.        ]
 [-1.         -0.66858639 -0.33585108 -0.00268339  0.33116261  0.6658073   1.        ]
 [-1.         -0.66850175 -0.33594729 -0.00268531  0.33125373  0.66571686  1.        ]
 [-1.         -0.66815249 -0.33519058 -0.00201488  0.33166784  0.6660607   1.        ]
 [-1.         -0.66803195 -0.33364162 -0.0010076   0.33187959  0.66698507  1.        ]
 [-1.         -0.67       -0.33        0.          0.33        0.67        1.        ]]

差不多到第十五次迭代的时候,就能算到理想值了。

一些较为复杂的情况

假设在无限大空间中有一块电势为1的平板,试试计算一下它周围的电势分布与场分布

等势线


三维图


电场分布


假设在无限大平面上有两块电势分别为1和-1的平板,试作出这个体系的电势图和电场分布

总结

总的来说,这道题目的算法并不复杂,难的地方可能在python值传递、浅copy和深copy的问题上,与其花大量时间研究python的内部机制,倒不如直接用numpy中的矩阵进行计算,也能大大简化代码。

致谢

绘图部分的代码参考了华杨学姐的代码

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • http://python.jobbole.com/85231/ 关于专业技能写完项目接着写写一名3年工作经验的J...
    燕京博士阅读 12,229评论 1 118
  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 135,771评论 19 139
  • 最近在写个性化推荐的论文,经常用到Python来处理数据,被pandas和numpy中的数据选取和索引问题绕的比较...
    shuhanrainbow阅读 10,041评论 6 19
  • 课后练习题 基础题a = 10b = 3下面三题分别运算后 c=? ,以及 c 的类型 加分题 有若干只鸡兔同在一...
    悟道叔阅读 1,716评论 0 1
  • 文/老贝 你若让我安静 我会安静写诗 上帝呀,你晨起的忽悠 是我的一场灾难。 我的饥饿是有声可循的 喜剧更像棱镜 ...
    老贝y阅读 1,033评论 0 1