R语言——ROC 终结者- - 科研猫

# ROC 曲线——科研猫

数据解释

第一列为二分类结局变量,第2~n列为模型预测概率。


代码如下:

options(stringsAsFactors = F)

options(warn = -1)

# 安装包

#install.packages("pROC")

#install.packages("wesanderson")

#install.packages("openxlsx")

# 加载包

library(pROC)

library(wesanderson)

library(openxlsx)

# 数据要求,第一列为 y,后面为 x_1~x_n

data = read.xlsx("data.xlsx",sheet=1,rowNames = F,colNames = T,startRow = 1,

                detectDates = F,na.strings = "#NA")

# check groups (should be <= 5)

num.value = ncol(data) - 1

if(num.value > 5){

  print("Error: Too many groups of observations!")

  q(save="no")

}

name.value = colnames(data)[2:ncol(data)]

# define favoritable colors

col = wes_palette("Darjeeling1",num.value,type=c("discrete"))

# ROC curve

pdf("1.ROC_Combined.pdf",height = 4,width = 4)

for (i in 1:num.value){

  if(i == 1){

    roc.data = roc(data[,1],data[,i+1],

                  percent=T,plot=T, grid=T,lty=i,

                  print.auc=F,col=col[i])

    text(30,50,"AUC",font = 2,col="darkgray")

    text(30,50-10*i,

        paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

        col=col[i])

  }else{

    roc.data = roc(data[,1],data[,i+1],

                  percent=T,plot=T, grid=T, add=T,lty=i,

                  print.auc=F,col=col[i])

    text(30,50-10*i,

        paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

        col=col[i])

  }

}

dev.off()

# smooth ROC curve

pdf("2.ROC_with_smooth_curve_Combined.pdf",height = 4,width = 4)

for (i in 1:num.value){

  if(i == 1){

    roc.data = roc(data[,1],data[,i+1],

                  percent=T,plot=T, grid=T,lty=i,smooth = T,

                  print.auc=F,col=col[i])

    text(30,50,"AUC",font = 2,col="darkgray")

    text(30,50-10*i,

        paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

        col=col[i])

  }else{

    roc.data = roc(data[,1],data[,i+1],

                  percent=T,plot=T, grid=T, add=T,lty=i,smooth = T,

                  print.auc=F,col=col[i])

    text(30,50-10*i,

        paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

        col=col[i])

  }

}

dev.off()

## ROC with Confidence intervals ##

transparentColor <- function(col,alpha=200){

  # alpha is an integer >= 1 and <= 255


  col.rgb = as.numeric(col2rgb(col))

  col.rgb.alpha = rgb(col.rgb[1],col.rgb[2],col.rgb[3],alpha=alpha,maxColorValue = 255)

  return(col.rgb.alpha)

}

## CI of the curve

# curve shape

pdf("3.ROC_with_confidence_level_ribbon.pdf",height = 3,width = 3*num.value)

par(mfrow=c(1,num.value))

for (i in 1:num.value){

  roc.data = roc(data[,1],data[,i+1],

                percent=T,plot=T, grid=T,

                print.auc=F,col=transparentColor("white",255))

  sens.ci <- ci.se(roc.data, boot.n=100,conf.level = 0.95,specificities=seq(0, 100, 5))

  plot(sens.ci,type="shape",col=transparentColor(col[i],100))


  text(30,40,"AUC",font = 2,col="darkgray")

  text(30,30,

      paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

      col=col[i])

}

dev.off()

#curve bar

pdf("4.ROC_with_confidence_level_bars_Combined.pdf",height = 3,width = 3*num.value)

par(mfrow=c(1,num.value))

for (i in 1:num.value){

  roc.data = roc(data[,1],data[,i+1],

                percent=T,plot=T, grid=T,

                print.auc=F,col=col[i])

  sens.ci <- ci.se(roc.data, boot.n=100,conf.level = 0.95,specificities=seq(0, 100, 5))

  plot(sens.ci,type="bars",col=col[i])


  text(30,40,"AUC",font = 2,col="darkgray")

  text(30,30,

      paste(name.value[i],":",sprintf("%0.4f",as.numeric(roc.data$auc))),

      col=col[i])

}

dev.off()

## Performance ##

getROCPerformance <- function(rocdata){

  performance = coords(roc.data, "best", best.method = "youden",

                      ret=c("threshold", "sensitivity","specificity",

                            "npv","ppv","tpr","fpr",

                            "tnr","fnr","fdr","accuracy",

                            "precision","youden"),

                      transpose = F)

  res = t(as.data.frame(performance))

  auc = as.numeric(roc.data$auc)

  res = rbind(auc,res)

  return(res)

}

perf.all = NULL

roc.data.all = NULL

for (i in 1:num.value){

  roc.data = roc(data[,1],data[,i+1],

                percent=T,plot=F)

  roc.data.all = c(roc.data.all,roc.data)

  perf = getROCPerformance(roc.data)

  colnames(perf) = name.value[i]

  perf.all = cbind(perf.all,perf)

}

perf.all = as.data.frame(perf.all)

perf.all$Index = c("AUC","Best Cut-off Value","Sensitivity","Specificity",

                  "Negative Predictive Value","Positive Predictive Value",

                  "True Positive Rate","False Positive Rate",

                  "True Negatice Rate","False Negative Rate",

                  "False Discovery Rate","Accuracy","Precision","Youden Index")

perf.all = perf.all[,c(ncol(perf.all),1:(ncol(perf.all)-1))]

write.table(perf.all,"5.Model.Performance.csv",row.names = F,col.names = T,quote=F,sep=",")

## Delong Comparisons ##

pair = t(combn(2:ncol(data),2))

compair.result = NULL

for (i in 1:nrow(pair)){

  name1 = colnames(data)[pair[i,1]]

  compair.result$Model1.ROC = c(compair.result$Model1.ROC,name1)

  roc1 = roc(data[,1],data[,pair[i,1]],

            percent=T,plot=F)


  name2 = colnames(data)[pair[i,2]]

  compair.result$Model2.ROC = c(compair.result$Model2.ROC,name2)

  roc2 = roc(data[,1],data[,pair[i,2]],

            percent=T,plot=F)


  p = roc.test(roc1, roc2, reuse.auc=FALSE, boot.n = 1000, boot.stratified = F)$p.value

  compair.result$Pvalue.Delong.test = c(compair.result$Pvalue.Delong.test,p)

}

compair.result = as.data.frame(compair.result)

write.table(compair.result,"6.Delong.Comparision.csv",row.names = F,col.names = T,quote=F,sep=",")

print('finish')

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。