import tensorflow as tf`
import numpy as np
import matplotlib.pyplot as plt
#使用numpy 生成200个随机点
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
noise = np.random.normal(0,0.02,x_data.shape)
y_data = np.square(x_data)+noise
#定义两个placeholder
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
#定义神经网络中间层
Weights_L1 = tf.Variable(tf.random_normal([1,10])) #1代表输入 10代表10个神经元
biases_L1 = tf.Variable(tf.zeros([1,10]))
Wx_plus_b_L1 = tf.matmul(x,Weights_L1)+biases_L1
L1 = tf.nn.tanh(Wx_plus_b_L1)
#定义神经网络输出层
Weights_L2 = tf.Variable(tf.random_normal([10,1]))
biases_L2 =tf.Variable(tf.zeros([1,1]))
Wx_plus_b_L2 =tf.matmul(L1,Weights_L2)+biases_L2
prediction = tf.nn.tanh(Wx_plus_b_L2)
loss =tf.reduce_mean(tf.square(y-prediction))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for _ in range(2000):
sess.run(train_step,feed_dict={x:x_data,y:y_data})
prediction_value = sess.run(prediction,feed_dict={x:x_data,y:y_data})
plt.figure()
plt.scatter(x_data,y_data)
plt.plot(x_data,prediction_value,'r-',lw=5)
plt.show()
线性回归Demo
最后编辑于 :
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。