65.AutoML-1

1.什么是AutoML?

  • 目前一个优秀的机器学习和深度学习模型,离不开这几个方面:

    • 一、优秀的数据预处理;
    • 二、合适的模型结构和功能;
    • 三、优秀的训练策略和超参数;
    • 四、合适的后处理操作;
    • 五、严格的结果分析。
  • 这几方面都对最终的结果有着举足轻重的影响,这也是目前的数据工程师和学者们的主要工作。

    • 但由于这每一方面都十分繁琐,尤其是在构建模型和训练模型上。而大部分情况下,这些工作有无须过深专业知识就能使用起来。
    • 所以AutoML主要的作用就是来帮助实现高效的模型构建和超参数调整。例如深度学习网络的架构搜索、超参数的重要性分析等等。
    • 当然AutoML并不简单的进行暴力或者随机的搜索,其仍然需要机器学习方面的知识,例如贝叶斯优化、强化学习、元学习以及迁移学习等等。
    • 目前也有些不错的AutoML工具包,例如Alex Honchar的Hyperopt、微软的NNI、Autokeras等。

2.自动化超参数搜索方法有哪些?

  • 目前自动化搜索主要包含网格搜索,随机搜索,基于模型的超参优化
  • 网格搜索:
    • 通常当超参数量较少的时候,可以使用网格搜索法。即列出每个超参数的大致候选集合。利用这些集合 进行逐项组合优化。在条件允许的情况下,重复进行网格搜索会当优秀,当然每次重复需要根据上一步得到的最优参数组合,进行进一步的细粒度的调整。网格搜索最大的问题就在于计算时间会随着超参数的数量指数级的增长。
  • 随机搜索:
    • 随机搜索,是一种用来替代网格搜索的搜索方式。随机搜索有别于网格搜索的一点在于,我们不需要设定一个离散的超参数集合,而是对每个超参数定义一个分布函数来生成随机超参数。随机搜索相比于网格搜索在一些不敏感超参上拥有明显优势。例如网格搜索对于批样本数量(batch size),在[16,32,64]这些范围内进行逐项调试,这样的调试显然收益更低下。当然随机搜索也可以进行细粒度范围内的重复的搜索优化。


  • 基于模型的超参优化:
    • 有别于上述两种的搜索策略,基于模型的超参调优问题转化为了优化问题。直觉上会考虑是否进行一个可导建模,然后利用梯度下降进行优化。但不幸的是我们的超参数通常情况下是离散的,而且其计算代价依旧很高。
    • 基于模型的搜索算法,最常见的就是贝叶斯超参优化。有别于的网格搜索和随机搜索独立于前几次搜索结果的搜索,贝叶斯则是利用历史的搜索结果进行优化搜索。其主要有四部分组成,
      • 1、目标函数,大部分情况下就是模型验证集上的损失。
      • 2、搜索空间,即各类待搜索的超参数。
      • 3、优化策略,建立的概率模型和选择超参数的方式。
      • 4、历史的搜索结果。首先对搜索空间进行一个先验性的假设猜想,即假设一种选择超参的方式,然后不断的优化更新概率模型,最终的目标是找到验证集上误差最小的一组超参数。

大数据视频推荐:
网易云课堂
CSDN
人工智能算法竞赛实战
AIops智能运维机器学习算法实战
ELK7 stack开发运维实战
PySpark机器学习从入门到精通
AIOps智能运维实战
腾讯课堂
大数据语音推荐:
ELK7 stack开发运维
企业级大数据技术应用
大数据机器学习案例之推荐系统
自然语言处理
大数据基础
人工智能:深度学习入门到精通

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容