Maximum Entropy Deep Inverse Reinforcement Learning

http://arxiv.org/abs/1507.04888
This paper presents a general framework for exploiting
the representational capacity of neural
networks to approximate complex, nonlinear reward
functions in the context of solving the inverse
reinforcement learning (IRL) problem. We
show in this context that the Maximum Entropy
paradigm for IRL lends itself naturally to the effi-
cient training of deep architectures. At test time,
the approach leads to a computational complexity
independent of the number of demonstrations,
which makes it especially well-suited for applications
in life-long learning scenarios. Our approach
achieves performance commensurate to
the state-of-the-art on existing benchmarks while
exceeding on an alternative benchmark based on
highly varying reward structures.Finally, we extend
the basic architecture - which is equivalent
to a simplified subclass of Fully Convolutional
Neural Networks (FCNNs) with width one - to
include larger convolutions in order to eliminate
dependency on precomputed spatial features and
work on raw input representations.

Paste_Image.png
Paste_Image.png
Paste_Image.png
Paste_Image.png
Paste_Image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 强大也要牺牲很多东西 相思成灾 不见春秋 孤独成性 不听窗外 修行一种精神 可拿可放 修行一种力量 说忘就忘 修行...
    大清晨的小太阳阅读 1,183评论 2 3
  • (๑⁼̴̀д⁼̴́๑)ドヤッ 直接上代码,界面一感觉界面较多控件,加上布局感觉要整好多。要整体...
    海泉阅读 2,435评论 0 1
  • 野猪走路的时候,不小心踩到了一只蚂蚁,野猪不仅没有哀悼这只因它而冤死的蚂蚁,甚至根本没有感觉到这只蚂蚁的存在。虽然...
    成都独行侠阅读 4,463评论 0 2