【No5】信息与熵

本篇内容主要讲清信息与熵的概念,为EM算法打下基础。

信息:i(x)=-log(p(x))如果说概率p是对确定性的度量,那么信息就是对不确定性的度量。

独立事件的信息:如果两个事件x和y相互独立,即p(xy)=p(x)p(y),假定x和y的信息量分别为i(x)和i(y),则二者同时发生的信息量应该为i(x^y)=i(x)+i(y)

熵:是对随机变量不确定性的度量。一个系统越是有序,信息熵就越低;反之,一个系统越是混乱,信息熵就越高。所以说信息熵可以被认为是系统有序化成都的一个度量。

不确定性越大,熵值越大;若随机变量退化为定值,熵为0。熵是自信息的期望。

下图为熵的公式:


熵其实定义了一个函数(概率分布函数)到一个值(信息熵)的映射。


单独的-xlog(x)的函数图像如上左图。

熵是所有情况的集合,所以某事件发生的概率为x,那么不发生的概率为(1-x),以跑硬币为例,出现正面的概率为x,出现反面的概率为(1-x),则整个事件应该计算正面与反面所有的情况,即上右图的公式。

根据上右图的概率图,可以返现,当P=0或1的时候,抛硬币的时间最稳定,H(x)最小,当x=0.5,即正面与反面出现的概率相等时,H(x)最大,抛硬币这个时间最不稳定。

其他关于熵的概念:

平均互信息:决策树中的“信息增益”,其实就是平均互信息I(x,y),衡量X,Y的相似性。


联合熵:两个随机变量x,y的联合分布,可以形成联合熵Joint Entropy,H(X,Y)表示。不能做误差衡量。

条件熵:在随机变量X发生的情况下,随机变量Y发生所新带来的熵定义为Y的条件熵,用H(Y|X),用来衡量在已知随机变量X的情况下随机变量Y的不确定性。可用来计算交叉熵。H(Y|X)=H(X,Y)-H(X),表示(X,Y)发生所包含的熵减去X单独发生包含的熵。

交叉熵:H(T;Y),衡量两个概率分布的差异性,逻辑回归中 的代价函数用到了交叉熵。

相对熵:KL散度,也是衡量两个概率分布的差异性。


小结:信息与熵介绍了很多概念,这些概念单独去看有两个感受不知道重点,不知道怎么用。等到EM算法推导看不懂公式时,再回来看这些概念会好很多,在学习有些需要“死记”这些知识。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 熵的相关概念,第一次在决策树那章做了简单介绍,但是要想正确理解熵的确实需要下一番功夫。这次,我们在最大熵模型这章继...
    559fb24f07f0阅读 5,407评论 2 11
  • 本系列第三篇,承接前面的《浅谈机器学习基础》和《浅谈深度学习基础》。 自然语言处理绪论 什么是自然语言处理? 自然...
    我偏笑_NSNirvana阅读 17,980评论 2 68
  • 信息是我们一直在谈论的东西,但信息这个概念本身依然比较抽象。但信息可不可以被量化,怎样量化?答案当然是有的,那就是...
    哈劳斯军士阅读 3,733评论 0 3
  • 信息熵与编码定理 [toc] 惊奇度与信息量 定性描述 惊奇度:一个事件的惊奇度是指该事件发生时我们所感到的惊奇程...
    Like_eb56阅读 2,617评论 0 0
  • 摘要:在深度学习之前已经有很多生成模型,但苦于生成模型难以描述难以建模,科研人员遇到了很多挑战,而深度学习的出现帮...
    肆虐的悲傷阅读 11,439评论 1 21