Validate Binary Search Tree

medium

Question

判断一个二叉树是否为,二叉搜索树(BST)

Notes

BST的特点:

  • 节点的左支树只包含值小于当前节点值的节点
  • 节点的右支树只包含值大于当前节点值的节点
  • 节点的左右支树都是BST

Example 1:
2
/
1 3
BT [2,1,3]是BST
Example 2:
1
/
2 3
BT [1,2,3]不是BST.

Solution

暴力的算法是比较当前节点值和左分支的每一个节点的值,右分支的每一个节点的值,对左分支和右分支做一样的处理,O(n**2) runtime, O(n) stack space。

抓住BST的特点,做一个one pass的检查就可以,根据父节点可以知道子节点的最大最小值,如果子节点不在最大最小值范围,则直接返回False

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        return self.valid(root, None, None)
    
    def valid(self, p, low, high):
        if p == None:
            return True
        return (low == None or p.val>low) and (high == None or p.val<high) \
                and self.valid(p.left,low,p.val) \
                and self.valid(p.right,p.val,high)

第二种方法将tree展开成in-order list,则该list应该是一个严格增序列。

# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def isValidBST(self, root):
        """
        :type root: TreeNode
        :rtype: bool
        """
        self.inOrderList  = []
        self.inOrder(root)
        
        return self.inOrderList == sorted(self.inOrderList) and len(set(self.inOrderList)) == len(self.inOrderList)
        
    def inOrder(self, n):
        if not n:
            return
        
        self.inOrder(n.left)
        self.inOrderList.append(n.val)
        self.inOrder(n.right)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

友情链接更多精彩内容