该文章属于刘小壮原创,转载请注明:刘小壮

程序加载过程
在iOS程序中会用到很多系统的动态库,这些动态库都是动态加载的。所有iOS程序共用一套系统动态库,在程序开始运行时才会开始链接动态库。

除了在项目设置里显式出现的动态库外,还会有一些隐式存在的动态库。例如objc和Runtime所属的libobjc.dyld和libSystem.dyld,在libSystem中包含常用的libdispatch(GCD)、libsystem_c(C语言基础库)、libsystem_blocks(Block)等。
使用动态库的优点:
- 防止重复。
iOS系统中所有App公用一套系统动态库,防止重复的内存占用。 - 减少包体积。因为系统动态库被内置到
iOS系统中,所以打包时不需要把这部分代码打进去,可以减小包体积。 - 动态性。因为系统动态库是动态加载的,所以可以在更新系统后,将动态库换成新的动态库。
加载过程
在应用程序启动后,由dyld(the dynamic link editor)进行程序的初始化操作。大概流程就像下面列出的步骤,其中第3、4、5步会执行多次,在ImageLoader加载新的image进内存后就会执行一次。
- 在引用程序启动后,由
dyld将应用程序加载到二进制中,并完成一些文件的初始化操作。 -
Runtime向dyld中注册回调函数。 - 通过
ImageLoader将所有image加载到内存中。 -
dyld在image发生改变时,主动调用回调函数。 -
Runtime接收到dyld的函数回调,开始执行map_images、load_images等操作,并回调+load方法。 - 调用
main()函数,开始执行业务代码。
ImageLoader是image的加载器,image可以理解为编译后的二进制。
下面是在Runtime的map_images函数打断点,观察回调情况的汇编代码。可以看出,调用是由dyld发起的,由ImageLoader通知dyld进行调用。

关于dyld我并没有深入研究,有兴趣的同学可以到Github上下载源码研究一下。
动态加载
一个OC程序可以在运行过程中动态加载和链接新类或Category,新类或Category会加载到程序中,其处理方式和其他类是相同的。动态加载还可以做许多不同的事,动态加载允许应用程序进行自定义处理。
OC提供了objc_loadModules运行时函数,执行Mach-O中模块的动态加载,在上层NSBundle对象提供了更简单的访问API。
map images
在Runtime加载时,会调用_objc_init函数,并在内部注册三个函数指针。其中map_images函数是初始化的关键,内部完成了大量Runtime环境的初始化操作。
在map_images函数中,内部也是做了一个调用中转。然后调用到map_images_nolock函数,内部核心就是_read_images函数。
void _objc_init(void)
{
// .... 各种init
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
void map_images(unsigned count, const char * const paths[],
const struct mach_header * const mhdrs[])
{
rwlock_writer_t lock(runtimeLock);
return map_images_nolock(count, paths, mhdrs);
}
void map_images_nolock(unsigned mhCount, const char * const mhPaths[],
const struct mach_header * const mhdrs[])
{
if (hCount > 0) {
_read_images(hList, hCount, totalClasses, unoptimizedTotalClasses);
}
}
在_read_images函数中完成了大量的初始化操作,函数内部代码量比较大,下面是精简版带注释的源代码。
先整体梳理一遍_read_images函数内部的逻辑:
- 加载所有类到类的
gdb_objc_realized_classes表中。 - 对所有类做重映射。
- 将所有
SEL都注册到namedSelectors表中。 - 修复函数指针遗留。
- 将所有
Protocol都添加到protocol_map表中。 - 对所有
Protocol做重映射。 - 初始化所有非懒加载的类,进行
rw、ro等操作。 - 遍历已标记的懒加载的类,并做初始化操作。
- 处理所有
Category,包括Class和Meta Class。 - 初始化所有未初始化的类。
void _read_images(header_info **hList, uint32_t hCount, int totalClasses, int unoptimizedTotalClasses)
{
header_info *hi;
uint32_t hIndex;
size_t count;
size_t i;
Class *resolvedFutureClasses = nil;
size_t resolvedFutureClassCount = 0;
static bool doneOnce;
TimeLogger ts(PrintImageTimes);
#define EACH_HEADER \
hIndex = 0; \
hIndex < hCount && (hi = hList[hIndex]); \
hIndex++
if (!doneOnce) {
doneOnce = YES;
// 实例化存储类的哈希表,并且根据当前类数量做动态扩容
int namedClassesSize =
(isPreoptimized() ? unoptimizedTotalClasses : totalClasses) * 4 / 3;
gdb_objc_realized_classes =
NXCreateMapTable(NXStrValueMapPrototype, namedClassesSize);
}
// 由编译器读取类列表,并将所有类添加到类的哈希表中,并且标记懒加载的类并初始化内存空间
for (EACH_HEADER) {
if (! mustReadClasses(hi)) {
continue;
}
bool headerIsBundle = hi->isBundle();
bool headerIsPreoptimized = hi->isPreoptimized();
/** 将新类添加到哈希表中 */
// 从编译后的类列表中取出所有类,获取到的是一个classref_t类型的指针
classref_t *classlist = _getObjc2ClassList(hi, &count);
for (i = 0; i < count; i++) {
// 数组中会取出OS_dispatch_queue_concurrent、OS_xpc_object、NSRunloop等系统类,例如CF、Fundation、libdispatch中的类。以及自己创建的类
Class cls = (Class)classlist[i];
// 通过readClass函数获取处理后的新类,内部主要操作ro和rw结构体
Class newCls = readClass(cls, headerIsBundle, headerIsPreoptimized);
// 初始化所有懒加载的类需要的内存空间
if (newCls != cls && newCls) {
// 将懒加载的类添加到数组中
resolvedFutureClasses = (Class *)
realloc(resolvedFutureClasses,
(resolvedFutureClassCount+1) * sizeof(Class));
resolvedFutureClasses[resolvedFutureClassCount++] = newCls;
}
}
}
// 将未映射Class和Super Class重映射,被remap的类都是非懒加载的类
if (!noClassesRemapped()) {
for (EACH_HEADER) {
// 重映射Class,注意是从_getObjc2ClassRefs函数中取出类的引用
Class *classrefs = _getObjc2ClassRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
// 重映射父类
classrefs = _getObjc2SuperRefs(hi, &count);
for (i = 0; i < count; i++) {
remapClassRef(&classrefs[i]);
}
}
}
// 将所有SEL都注册到哈希表中,是另外一张哈希表
static size_t UnfixedSelectors;
sel_lock();
for (EACH_HEADER) {
if (hi->isPreoptimized()) continue;
bool isBundle = hi->isBundle();
SEL *sels = _getObjc2SelectorRefs(hi, &count);
UnfixedSelectors += count;
for (i = 0; i < count; i++) {
const char *name = sel_cname(sels[i]);
// 注册SEL的操作
sels[i] = sel_registerNameNoLock(name, isBundle);
}
}
// 修复旧的函数指针调用遗留
for (EACH_HEADER) {
message_ref_t *refs = _getObjc2MessageRefs(hi, &count);
if (count == 0) continue;
for (i = 0; i < count; i++) {
// 内部将常用的alloc、objc_msgSend等函数指针进行注册,并fix为新的函数指针
fixupMessageRef(refs+i);
}
}
// 遍历所有协议列表,并且将协议列表加载到Protocol的哈希表中
for (EACH_HEADER) {
extern objc_class OBJC_CLASS_$_Protocol;
// cls = Protocol类,所有协议和对象的结构体都类似,isa都对应Protocol类
Class cls = (Class)&OBJC_CLASS_$_Protocol;
assert(cls);
// 获取protocol哈希表
NXMapTable *protocol_map = protocols();
bool isPreoptimized = hi->isPreoptimized();
bool isBundle = hi->isBundle();
// 从编译器中读取并初始化Protocol
protocol_t **protolist = _getObjc2ProtocolList(hi, &count);
for (i = 0; i < count; i++) {
readProtocol(protolist[i], cls, protocol_map,
isPreoptimized, isBundle);
}
}
// 修复协议列表引用,优化后的images可能是正确的,但是并不确定
for (EACH_HEADER) {
// 需要注意到是,下面的函数是_getObjc2ProtocolRefs,和上面的_getObjc2ProtocolList不一样
protocol_t **protolist = _getObjc2ProtocolRefs(hi, &count);
for (i = 0; i < count; i++) {
remapProtocolRef(&protolist[i]);
}
}
// 实现非懒加载的类,对于load方法和静态实例变量
for (EACH_HEADER) {
classref_t *classlist =
_getObjc2NonlazyClassList(hi, &count);
for (i = 0; i < count; i++) {
Class cls = remapClass(classlist[i]);
if (!cls) continue;
// 实现所有非懒加载的类(实例化类对象的一些信息,例如rw)
realizeClass(cls);
}
}
// 遍历resolvedFutureClasses数组,实现所有懒加载的类
if (resolvedFutureClasses) {
for (i = 0; i < resolvedFutureClassCount; i++) {
// 实现懒加载的类
realizeClass(resolvedFutureClasses[i]);
resolvedFutureClasses[i]->setInstancesRequireRawIsa(false/*inherited*/);
}
free(resolvedFutureClasses);
}
// 发现和处理所有Category
for (EACH_HEADER) {
// 外部循环遍历找到当前类,查找类对应的Category数组
category_t **catlist =
_getObjc2CategoryList(hi, &count);
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
// 内部循环遍历当前类的所有Category
for (i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
// 首先,通过其所属的类注册Category。如果这个类已经被实现,则重新构造类的方法列表。
bool classExists = NO;
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
// 将Category添加到对应Class的value中,value是Class对应的所有category数组
addUnattachedCategoryForClass(cat, cls, hi);
// 将Category的method、protocol、property添加到Class
if (cls->isRealized()) {
remethodizeClass(cls);
classExists = YES;
}
}
// 这块和上面逻辑一样,区别在于这块是对Meta Class做操作,而上面则是对Class做操作
// 根据下面的逻辑,从代码的角度来说,是可以对原类添加Category的
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
addUnattachedCategoryForClass(cat, cls->ISA(), hi);
if (cls->ISA()->isRealized()) {
remethodizeClass(cls->ISA());
}
}
}
}
// 初始化从磁盘中加载的所有类,发现Category必须是最后执行的
// 从runtime objc4-532版本源码来看,DebugNonFragileIvars字段一直是-1,所以不会进入这个方法中
if (DebugNonFragileIvars) {
realizeAllClasses();
}
#undef EACH_HEADER
}
其内部还调用了很多其他函数,后面会详细介绍函数内部实现。
load images
在项目中经常用到load类方法,load类方法的调用时机比main函数还要靠前。load方法是由系统来调用的,并且在整个程序运行期间,只会调用一次,所以可以在load方法中执行一些只执行一次的操作。
一般Method Swizzling都会放在load方法中执行,这样在执行main函数前,就可以对类方法进行交换。可以确保正式执行代码时,方法肯定是被交换过的。
如果对一个类添加Category后,并且重写其原有方法,这样会导致Category中的方法覆盖原类的方法。但是load方法却是例外,所有Category和原类的load方法都会被执行。
源码分析
load方法由Runtime进行调用,下面我们分析一下load方法的实现,load的实现源码都在objc-loadmethod.mm中。
在一个新的工程中,我们创建一个TestObject类,并在其load方法中打一个断点,看一下系统的调用堆栈。

从调用栈可以看出,是通过系统的动态链接器dyld开始的调用,然后调到Runtime的load_images函数中。load_images函数是通过_dyld_objc_notify_register函数,将自己的函数指针注册给dyld的。
void _objc_init(void)
{
static bool initialized = false;
if (initialized) return;
initialized = true;
// fixme defer initialization until an objc-using image is found?
environ_init();
tls_init();
static_init();
lock_init();
exception_init();
_dyld_objc_notify_register(&map_images, load_images, unmap_image);
}
在load_images函数中主要做了两件事,首先通过prepare_load_methods函数准备Class load list和Category load list,然后通过call_load_methods函数调用已经准备好的两个方法列表。
void
load_images(const char *path __unused, const struct mach_header *mh)
{
if (!hasLoadMethods((const headerType *)mh)) return;
prepare_load_methods((const headerType *)mh);
call_load_methods();
}
首先我们看一下prepare_load_methods函数的实现,看一下其内部是怎么查找load方法的。可以看到,其内部主要分为两部分,查找Class的load方法列表和查找Category方法列表。
准备类的方法列表时,首先通过_getObjc2NonlazyClassList函数获取所有非懒加载类的列表,这时候获取到的是一个classref_t类型的数组,然后遍历数组添加load方法列表。
Category过程也是类似,通过_getObjc2NonlazyCategoryList函数获取所有非懒加载Category的列表,得到一个category_t类型的数组,需要注意的是这是一个指向指针的指针。然后对其进行遍历并添加到load方法列表,Class和Category的load方法列表是两个列表。
void prepare_load_methods(const headerType *mhdr)
{
size_t count, i;
// 获取到非懒加载的类的列表
classref_t *classlist =
_getObjc2NonlazyClassList(mhdr, &count);
for (i = 0; i < count; i++) {
// 设置Class的调用列表
schedule_class_load(remapClass(classlist[i]));
}
// 获取到非懒加载的Category列表
category_t **categorylist = _getObjc2NonlazyCategoryList(mhdr, &count);
for (i = 0; i < count; i++) {
category_t *cat = categorylist[i];
Class cls = remapClass(cat->cls);
// 忽略弱链接的类别
if (!cls) continue;
// 实例化所属的类
realizeClass(cls);
// 设置Category的调用列表
add_category_to_loadable_list(cat);
}
}
在添加类的load方法列表时,内部会递归遍历把所有父类的load方法都添加进去,顺着继承者链的顺序添加,会先把父类添加在前面。然后会调用add_class_to_loadable_list函数,将自己的load方法添加到对应的数组中。
static void schedule_class_load(Class cls)
{
if (!cls) return;
// 已经添加Class的load方法到调用列表中
if (cls->data()->flags & RW_LOADED) return;
// 确保super已经被添加到load列表中,默认是整个继承者链的顺序
schedule_class_load(cls->superclass);
// 将IMP和Class添加到调用列表
add_class_to_loadable_list(cls);
// 设置Class的flags,表示已经添加Class到调用列表中
cls->setInfo(RW_LOADED);
}
而Category则不需要考虑父类的问题,所以直接在prepare_load_methods函数中遍历Category数组,然后调用add_category_to_loadable_list函数即可。
在add_category_to_loadable_list函数中,会判断当前Category有没有实现load方法,如果没有则直接return,如果实现了则添加到loadable_categories数组中。
类的add_class_to_loadable_list函数内部实现也是类似,区别在于类的数组叫做loadable_classes。
void add_category_to_loadable_list(Category cat)
{
IMP method;
// 获取Category的load方法的IMP
method = _category_getLoadMethod(cat);
// 如果Category没有load方法则return
if (!method) return;
// 如果已使用大小等于数组大小,对数组进行动态扩容
if (loadable_categories_used == loadable_categories_allocated) {
loadable_categories_allocated = loadable_categories_allocated*2 + 16;
loadable_categories = (struct loadable_category *)
realloc(loadable_categories,
loadable_categories_allocated *
sizeof(struct loadable_category));
}
loadable_categories[loadable_categories_used].cat = cat;
loadable_categories[loadable_categories_used].method = method;
loadable_categories_used++;
}
到此为止,loadable_classes和loadable_categories两个数组已经准备好了,load_images会调用call_load_methods函数执行这些load方法。在这个方法中,call_class_loads函数是负责调用类方法列表的,call_category_loads负责调用Category的方法列表。
void call_load_methods(void)
{
bool more_categories;
void *pool = objc_autoreleasePoolPush();
do {
// 反复执行call_class_loads函数,直到数组中没有可执行的load方法
while (loadable_classes_used > 0) {
call_class_loads();
}
more_categories = call_category_loads();
} while (loadable_classes_used > 0 || more_categories);
objc_autoreleasePoolPop(pool);
loading = NO;
}
下面是调用类方法列表的代码,内部主要是通过对loadable_classes数组进行遍历,并获取到loadable_class的结构体,结构体中存在Class和IMP,然后直接调用即可。
Category的调用方式和类的一样,就不在下面贴代码了。需要注意的是,load方法都是直接调用的,并没有走运行时的objc_msgSend函数。
static void call_class_loads(void)
{
int i;
struct loadable_class *classes = loadable_classes;
int used = loadable_classes_used;
loadable_classes = nil;
loadable_classes_allocated = 0;
loadable_classes_used = 0;
for (i = 0; i < used; i++) {
Class cls = classes[i].cls;
load_method_t load_method = (load_method_t)classes[i].method;
if (!cls) continue;
(*load_method)(cls, SEL_load);
}
if (classes) free(classes);
}
struct loadable_class {
Class cls; // may be nil
IMP method;
};
根据上面的源码分析,我们可以看出load方法的调用顺序应该是父类 -> 子类 -> 分类的顺序。因为执行加载Class的时机是在Category之前的,而且load子类之前会先load父类,所以是这种顺序。
initialize
和load方法类似的也有initialize方法,initialize方法也是由Runtime进行调用的,自己不可以直接调用。与load方法不同的是,initialize方法是在第一次调用类所属的方法时,才会调用initialize方法,而load方法是在main函数之前就全部调用了。所以理论上来说initialize可能永远都不会执行,如果当前类的方法永远不被调用的话。
下面我们研究一下initialize在Runtime中的源码。
在向对象发送消息时,lookUpImpOrForward函数中会判断当前类是否被初始化,如果没有被初始化,则先进行初始化再调用类的方法。
IMP lookUpImpOrForward(Class cls, SEL sel, id inst, bool initialize, bool cache, bool resolver);
// ....省略好多代码
// 第一次调用当前类的话,执行initialize的代码
if (initialize && !cls->isInitialized()) {
_class_initialize (_class_getNonMetaClass(cls, inst));
}
// ....省略好多代码
在进行初始化的时候,和load方法的调用顺序一样,会按照继承者链先初始化父类。_class_initialize函数中关键的两行代码是callInitialize和lockAndFinishInitializing的调用。
// 第一次调用类的方法,初始化类对象
void _class_initialize(Class cls)
{
Class supercls;
bool reallyInitialize = NO;
// 递归初始化父类。initizlize不用显式的调用super,因为runtime已经在内部调用了
supercls = cls->superclass;
if (supercls && !supercls->isInitialized()) {
_class_initialize(supercls);
}
{
monitor_locker_t lock(classInitLock);
if (!cls->isInitialized() && !cls->isInitializing()) {
cls->setInitializing();
reallyInitialize = YES;
}
}
if (reallyInitialize) {
_setThisThreadIsInitializingClass(cls);
if (MultithreadedForkChild) {
performForkChildInitialize(cls, supercls);
return;
}
@try {
// 通过objc_msgSend()函数调用initialize方法
callInitialize(cls);
}
@catch (...) {
@throw;
}
@finally {
// 执行initialize方法后,进行系统的initialize过程
lockAndFinishInitializing(cls, supercls);
}
return;
}
else if (cls->isInitializing()) {
if (_thisThreadIsInitializingClass(cls)) {
return;
} else if (!MultithreadedForkChild) {
waitForInitializeToComplete(cls);
return;
} else {
_setThisThreadIsInitializingClass(cls);
performForkChildInitialize(cls, supercls);
}
}
}
通过objc_msgSend函数调用initialize方法。
void callInitialize(Class cls)
{
((void(*)(Class, SEL))objc_msgSend)(cls, SEL_initialize);
asm("");
}
lockAndFinishInitializing函数中会完成一些初始化操作,其内部会调用_finishInitializing函数,在函数内部会调用class的setInitialized函数,核心工作都由setInitialized函数完成。
static void lockAndFinishInitializing(Class cls, Class supercls)
{
monitor_locker_t lock(classInitLock);
if (!supercls || supercls->isInitialized()) {
_finishInitializing(cls, supercls);
} else {
_finishInitializingAfter(cls, supercls);
}
}
负责初始化类和元类,函数内部主要是查找当前类和元类中是否定义了某些方法,然后根据查找结果设置类和元类的一些标志位。
void
objc_class::setInitialized()
{
Class metacls;
Class cls;
// 获取类和元类对象
cls = (Class)this;
metacls = cls->ISA();
bool inherited;
bool metaCustomAWZ = NO;
if (MetaclassNSObjectAWZSwizzled) {
metaCustomAWZ = YES;
inherited = NO;
}
else if (metacls == classNSObject()->ISA()) {
// 查找是否实现了alloc和allocWithZone方法
auto& methods = metacls->data()->methods;
for (auto mlists = methods.beginCategoryMethodLists(),
end = methods.endCategoryMethodLists(metacls);
mlists != end;
++mlists)
{
if (methodListImplementsAWZ(*mlists)) {
metaCustomAWZ = YES;
inherited = NO;
break;
}
}
}
else if (metacls->superclass->hasCustomAWZ()) {
metaCustomAWZ = YES;
inherited = YES;
}
else {
auto& methods = metacls->data()->methods;
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
if (methodListImplementsAWZ(*mlists)) {
metaCustomAWZ = YES;
inherited = NO;
break;
}
}
}
if (!metaCustomAWZ) metacls->setHasDefaultAWZ();
if (PrintCustomAWZ && metaCustomAWZ) metacls->printCustomAWZ(inherited);
bool clsCustomRR = NO;
if (ClassNSObjectRRSwizzled) {
clsCustomRR = YES;
inherited = NO;
}
// 查找元类是否实现MRC方法,如果是则进入if语句中
if (cls == classNSObject()) {
auto& methods = cls->data()->methods;
for (auto mlists = methods.beginCategoryMethodLists(),
end = methods.endCategoryMethodLists(cls);
mlists != end;
++mlists)
{
if (methodListImplementsRR(*mlists)) {
clsCustomRR = YES;
inherited = NO;
break;
}
}
}
else if (!cls->superclass) {
clsCustomRR = YES;
inherited = NO;
}
else if (cls->superclass->hasCustomRR()) {
clsCustomRR = YES;
inherited = YES;
}
else {
// 查找类是否实现MRC方法,如果是则进入if语句中
auto& methods = cls->data()->methods;
for (auto mlists = methods.beginLists(),
end = methods.endLists();
mlists != end;
++mlists)
{
if (methodListImplementsRR(*mlists)) {
clsCustomRR = YES;
inherited = NO;
break;
}
}
}
if (!clsCustomRR) cls->setHasDefaultRR();
if (PrintCustomRR && clsCustomRR) cls->printCustomRR(inherited);
metacls->changeInfo(RW_INITIALIZED, RW_INITIALIZING);
}
需要注意的是,initialize方法和load方法不太一样,Category中定义的initialize方法会覆盖原方法而不是像load方法一样都可以调用。
简书由于排版的问题,阅读体验并不好,布局、图片显示、代码等很多问题。所以建议到我Github上,下载Runtime PDF合集。把所有Runtime文章总计九篇,都写在这个PDF中,而且左侧有目录,方便阅读。

下载地址:Runtime PDF
麻烦各位大佬点个赞,谢谢!😁
