Leetcode 322 零钱兑换

零钱兑换

题目

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1

  • 示例1:

    输入: coins = [1, 2, 5], amount = 11
    输出: 3 
    解释: 11 = 5 + 5 + 1
    
  • 示例2:

    输入: coins = [2], amount = 3
    输出: -1
    

解答

  • 思路:

    • 使用动态规划;

    • 定义f(n)为状态转移方程,表示凑n元所需的最少硬币数:

      f(n) = \begin{cases}-1, & n < 0 \\ 0, & n == 0 \\ min{f(n - c) + 1 | c \in coins}, & n > 0 \end{cases}

  • 代码:

    def coinChange(self, coins, amount):
        """
        :type coins: List[int],
        :type amount: int
        :rtype int
    
        (knowledge)
    
        思路:
        1. 使用动态规划;
        2. 定义f(n)为状态转移方程,表示凑n元所需的最少硬币数:
            -1 n < 0
            0  n == 0
            min{f(n - c) + 1 | c ∈ coins}
        """
        
        dp = [amount + 1 for i in range(amount + 1)]
    
        dp[0] = 0
    
        for i in range(len(dp)):
            for coin in coins:
                if i - coin < 0:
                    continue
                dp[i] = min(dp[i], dp[i - coin] + 1)
        return dp[amount] if dp[amount] != amount + 1 else -1
    

测试验证

class Solution:
    def coinChange(self, coins, amount):
        """
        :type coins: List[int],
        :type amount: int
        :rtype int

        (knowledge)

        思路:
        1. 使用动态规划;
        2. 定义f(n)为状态转移方程,表示凑n元所需的最少硬币数:
            -1 n < 0
            0  n == 0
            min{f(n - c) + 1 | c ∈ coins}
        """

        dp = [amount + 1 for i in range(amount + 1)]

        dp[0] = 0

        for i in range(len(dp)):
            for coin in coins:
                if i - coin < 0:
                    continue
                dp[i] = min(dp[i], dp[i - coin] + 1)
        return dp[amount] if dp[amount] != amount + 1 else -1


if __name__ == '__main__':
    solution = Solution()
    print(solution.coinChange([1, 2, 5], 11), "= 3")
    print(solution.coinChange([2], 3), "= -1")
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。