高数——微分中值定理之罗尔定理——学习笔记(20)

罗尔中值定理

罗尔中值定理是微分学中一条重要的定理,是三大微分中值定理之一,描述如下: 如果函数f(x)满足以下条件:

(1)在闭区间[a,b]上连续

(2)在(a,b)内可导

(3)f(a)=f(b),则至少存在一个ξ∈(a,b),使得f'(ξ)=0


证明过程

证明:因为函数f(x)在闭区间[a,b]上连续,所以存在最大值与最小值,分别用M和m表示,分两种情况讨论:

1. 若M=m,则函数f(x)在闭区间[a,b]上必为常数,结论显然成立。

2. 若M>m,则因为f(a)=f(b)使得最大值M与最小值m至少有一个在(a,b)内某点ξ处取得,从而ξ是f(x)的极值费马引理点,由条件f(x)在开区间(a,b)内可导得f(x)在ξ处可导,故由推知:f'(ξ)=0。


罗尔中值定理的几何意义

若连续曲线y=f(x)在区间[a,b]上所对应的弧段AB,除端点外处处具有不垂直于x轴的切线,且在弧的两个端点A,B处的纵坐标相等,则在弧AB上至少有一点C,使曲线在C点处的切线平行于x轴。

图片发自简书App

图片发自简书App

图片发自简书App
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 一、费马定理 设函数f(x)在点x0的某邻域U(x0)内有定义,并且在x0处可导,如果对任意的x∈U(x0),有f...
    张子涵97阅读 5,894评论 0 1
  • (参考百度百科) 导数定义: 设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+...
    萍水相逢_程序员阅读 5,977评论 0 6
  • 专业考题类型管理运行工作负责人一般作业考题内容选项A选项B选项C选项D选项E选项F正确答案 变电单选GYSZ本规程...
    小白兔去钓鱼阅读 12,944评论 0 13
  • 大学已经是一个开放的平台,除了仍然会继续的课堂,还会多了一些更加丰富的活动。 有人问过我,“不打算找个女朋友么?”...
    当你说阅读 2,299评论 0 0
  • 真的要感叹时间的飞逝,总是那么不经意的又老了几天,每每看着日期的变化,心中就会产生焦虑,觉得时间没有管理好,觉得自...
    雪妹_c340阅读 3,558评论 2 3