Win7下Mahout单机开发环境搭建

一、软硬件环境

操作系统:Windows 7
IDE:Intellij IDEA社区版
Java版本:JDK1.8
Mahout版本:0.12.2

二、搭建步骤

  1. 安装Java JDK,建议1.6以上;
  2. 安装IDE,这里我选择Intellij IDEA社区版,免费而且集成Maven。注意设置JDK路径。
  3. 下载Mahout,我在官网下载的最新版apache-mahout-distribution-0.12.2.zip,解压到某个目录即可。(当然你也可以下载源码自己用maven编译)

三、单机测试

这里实现一个推荐程序,使用基于用户的协同过滤算法(User-based CF),数据集[用户ID, 物品ID,偏好值]如下:

1,101,5.0
1,102,3.0
1,103,2.5
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0

在Intellij IDEA中创建一个Java项目,并在File->Project Structure中导入jar依赖库:

mahout-mr-0.12.2.jar
mahout-math-0.12.2.jar
$MAHOUT_HOME/lib/*

当然你也可以导入全部jar包。
然后实现基于用户的协同过滤推荐算法:

import java.io.File;
import java.util.List;

import java.io.IOException;
import org.apache.mahout.cf.taste.common.TasteException;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;

import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.RecommendedItem;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;

/**
 * Created by SongLee on 2016/11/10.
 */
public class UserCF {
    final static int NEIGHBORHOOD_NUM = 2;
    final static int RECOMMENDER_NUM = 1;

    public static void main(String[] args) throws IOException, TasteException {
        String name = "D:/item.csv";
        // 创建数据模型
        DataModel model = new FileDataModel(new File(name));
        // 计算相似度
        UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
        //
        UserNeighborhood neighborhood = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, similarity, model);
        //
        Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);
        // 生成推荐结果
        List<RecommendedItem> recommendations = recommender.recommend(1, RECOMMENDER_NUM);
        for(RecommendedItem recommendation : recommendations) {
            System.out.println(recommendation);
        }

    }
}

运行上面的程序输出:

RecommendedItem[item:104, value:4.257081]

可以知道,推荐程序把物品104推荐给了用户1,因为它评估出用户1对物品104的偏好值约为4.26。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 同一地点,不同时间,别样的风景
    独爱八月阅读 234评论 0 0
  • 一提到草原肯定就会想到骏马,接下来就是牛羊,新疆,手撕羊排,马奶酒等等,根本停不下来啊。一股牛奶的味道渐渐的飘来,...
    九号咖啡屋阅读 264评论 0 0
  • 昨天看到一个朋友发的朋友圈,说他在连队时的一个老班长英年早逝,才44岁。令人唏嘘不已!我在想,当兵出身的,...
    华英雄_d16c阅读 655评论 0 0